

TEST REPORT

Send To: 13790

Ms. Tracy Bloor Fairey Industrial Ceramics Ltd. Unit 4 Lymedale Cross Industrial Estate Newcastle-Under-Lyme, Staffordshire ST5 9BT, United Kingdom Facility: 13792

Fairey Industrial Ceramics Ltd.
Unit 4 Lymedale Cross Industrial Estate
Newcastle-Under-Lyme
Staffordshire ST5 9BT
United Kingdom

Result	PASS	Report Date 10-NOV-2014
Customer Name	Doulton Water Filters	
Tested To	Standard 53 Lead Reduction pH 8.5 POU/PO	E 200%
Description	HIP/Ultracarb Inline	
Test Type	Qualification	
Job Number	J-00143625	
Project Number	W0126789	
Project Manager	DeMarrio Boles	

Thank you for having your product tested by NSF International.

Please contact your Project Manager if you have any questions or concerns pertaining to this report.

Report Authorization

ferri S. Se Vansules

Date 10-NOV-2014

LeVanseler, Kerri - Director, Chemistry Laboratory

Standard 53 Lead Reduction pH 8.5 POU/POE 200%: PASS

Manufacturer's Name: Fairey Industrial Ceramics Ltd.

Job ID: J-00143625

Date of Job Creation: 12-SEP-2014

Date Sample Received: 08-SEP-2014

Date Job Placed on Hold: 01-OCT-2014

Date Job Released from Hold: 01-OCT-2014

Date Test Completed: 10-NOV-2014

Sample Type: Qualification

Product: HIP/Ultracarb Inline

DCC Number: PW00918 **Filter Capacity:** 600 Gallons

Flushing Time: flushed for a minimum of 10 minutes, let stand for 24 hours, flush 10 minutes

Maximum Rated Op. Pressure: 125 PSI

On Cycle: 10/90

Percent Capacity: 200%

Physical Description of Sample: Plumbed in to Separate Tap without Reservoir

Rated Service Flow: 0.5 GPM

Test Description: STD 53 - Lead 8.5pH Reduction-HIP/ Ultracarb Inline-QQ

Trade Designation/Model Number: HIP/Ultracarb Inline

Performance Standard: 53 - 2013

Lead P/F: PASS

Pass/Fail Criteria (Lead): 10 ug/L Overall Percent Reduction: 98.7 %

Maximum Effluent: 4 ug/L

All effluent values are less than or equal to the pass/fail criteria: YES

Data Summary Table

Accumulated Volume (gal)		Dynamic Pressure (psi)	Lead (ug/L)		pН
Effluent 1	Effluent 2	Influent	Effluent 1	Effluent 2	Influent
12	10	62	ND(1)	ND(1)	8.48
300	300	60	ND(1)	ND(1)	8.45
600	600	60	ND(1)	ND(1)	8.54
901	901	59	2	2	8.53
1080	1080	59	3	2	8.56
1200	1200	60	4	4	8.46
	12 300 600 901 1080	(gal) Effluent 1 Effluent 2 12 10 300 300 600 600 901 901 1080 1080	(gal) (psi) Effluent 1 Effluent 2 Influent 12 10 62 300 300 60 600 600 60 901 901 59 1080 1080 59	(gal) (psi) (ug Effluent 1 Effluent 2 Influent Effluent 1 12 10 62 ND(1) 300 300 60 ND(1) 600 600 60 ND(1) 901 901 59 2 1080 1080 59 3	Effluent 1 Effluent 2 Influent Effluent 1 Effluent 2 12 10 62 ND(1) ND(1) 300 300 60 ND(1) ND(1) 600 600 60 ND(1) ND(1) 901 901 59 2 2 1080 1080 59 3 2

Sample Point	Flow Rate (gpm)		Fine Particulate (%)	Lead (ug/L)	Total Particulate (%)
	Effluent 1	Effluent 2	Influent	Influent	Influent
Startup	0.50	0.51	52	130	32
50%	0.49	0.51	32	140	31
100%	0.50	0.52	50	150	27
150%	0.51	0.52	40	150	33
180%	0.51	0.51	40	150	33
200%	0.52	0.51	20	160	31

Lead Detection Limit: 1 ug/L **pH Detection Limit:** 0.01

Data Analysis Table

Sample Point	Inf. Average (ug/L)	Average (ug/L)		Eff. % Reduction (Ave. Inf.) (%)		
		Effluent 1	Effluent 2	All Effluent	Effluent 1	Effluent 2
100%	140	ND(1)	ND(1)	>99.3	>99.3	>99.3
150%	140	1	1	98.6	98.6	98.6
180%	140	2	1	98.3	97.9	98.6
200%	150	2	2	97.3	97.3	97.3

Sample Point	Ave. % Reduction (%)	Maximum (ug/L)	Met Minimum Criteria
100%	>99.3	ND(1)	YES
150%	99.1	2	YES
180%	99.0	3	YES
200%	98.7	4	YES

Inf. Average: Influent AverageAverage: All Effluent Average

Eff. % Reduction (Ave. Inf.): Effluent percent reduction calculated from average of previous influent values.

Ave. % Reduction: Percent reduction calculated from all prior influents and effluents.

Maximum: Maximum Effluent

Met Minimum Criteria: All effluent values are less than or equal to the pass/fail criteria

Water Characteristics

		Range			
Characteristic	Units	Minimum	Average	Maximum	
Alkalinity as CaCO3	mg/LCaCO3	55	100	110	
Chlorine, Total Residual	mg/L	0.37	0.51	0.61	
Hardness, Total	mg/LCaCO3	60	110	120	
Temperature	degrees C	19	20	22	
pH		8.31		8.60	
Total Particulate	%	24	30	33	

All analyses performed at NSF International, 789 N. Dixboro Road, Ann Arbor MI 48105

Percent Reduction Calculations

Overall Percent Reduction:

Influent Average includes all influents. Effluent Average includes all effluents.

Influent Average Percent Reduction Calculations

Influent Average Percent Reduction for Current Influent Point:

Influent Average includes all influents up to and including the current sample point. Effluent Average includes all effluents for the current sample point.

Influent Average Percent Reduction for Current Effluent Point:

Influent Average includes all influents up to and including the current sample point. Effluent includes the effluent value for the specific sample point.

Average Percent Reduction Calculations

Average Percent Reduction:

Influent Average includes all influents up to and including the current sample point. Effluent Average includes all effluents up to and including the current sample point.

Percent Total Particulate:

Total Lead is the total soluble and particulate lead in the sample. 0.1μ Filtered Lead is the total soluble lead.

Percent Total Particulate =
$$\frac{\text{Total Lead - 0.1 } \mu \text{ Filtered Lead}}{\text{Total Lead}}$$
 * 100

Percent Fine Particulate:

0.1 µ Filtered Lead is the total soluble lead.

1.2 µ Filtered Lead is the total soluble and particulate lead that is less than 1.2 microns in size.

Percent Fine Particulate =
$$\frac{1.2 \mu \text{ Filtered Lead} - 0.1 \mu \text{ Filtered Lead}}{\text{Total Lead} - 0.1 \mu \text{ Filtered Lead}} * 100$$

Test Configuration